И гидрогеологические условия. Строительный консалтинг - оптимальные решения с минимальными затратами Способы исправления недостатков суглинистой почвы

1. ОБЩИЕ СВЕДЕНИЯ.

Инженерно-геологические изыскания, для проектирования и строительства внутриквартальных проездов в Ломоносовском районе Ленинградской области в районе д. Велигонты ДНП «Малиновка» проводились по заказу ДНП «Малиновка» на основании договора № 06/13-Г от 01.01.2001 г., технического задания заказчика и уведомления на производство изысканий Комитета государственного строительного надзора и государственной экспертизы Ленинградской области № 000/13 от 29.03.13 г.

В соответствии с техническим заданием Заказчика пройдено 7 скважин глубиной по 4,0 метра, диаметром 93-72 мм, буровой установкой УКБ-12/25, всего 28,0 пог. м.

Буровые работы выполнялись буровой бригадой при участии главного геолога 25.02.2013 г. В процессе бурения отбирались пробы грунта для лабораторных исследований в соответствии с требованиями ГОСТ. Всего отобрано 19 образцов грунта нарушенной и ненарушенной структуры для определения физических свойств грунтов, 2 пробы воды. Пройденные выработки затампонированы в соответствии с требованиями «ВТУ по производству ликвидационного тампонажа скважин, проходимых при инженерно-геологических изысканиях » (ГРИИ Глав АПУ, Л. 1987 г.)

Акт тампонажа скважин прилагается (Приложение)

Выполненные объемы работ в целом соответствуют программе работ и техническому заданию. Акт технической приемки полевых работ прилагается (Приложение).

Камеральные работы выполнялись в соответствии с требованиями СНиП, СП, СНиП 2-03.03-85, ГОСТ, ГОСТ геологом Зайцевым работа принята внутриведомственной комиссией, акт прилагается (Приложение).

При составлении заключения использованы материалы изученности, Геология СССР, т.1, 1967 г., «Гидрогеология СССР», т. III, действующие нормативные документы. Графические материалы оформлялись по ГОСТ 21.302-96, СНиП II-9-78.

2. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ

участка изысканий

2.1. Характеристика района работ

Рассматриваемый участок изысканий расположен в районе д. Велигонты, Ломоносовского района, Ленинградской области. Трасса проходит по лугу. Вся территория представляет заброшенные сельскохозяйственные угодья.

В геоморфологическом отношении территория работ входит в пределы слабоволнистой прикамовой равнины. Рельеф местности – равнина, слегка волнистая, с плавными колебаниями поверхности, с абсолютными отметками устьев скважин от 49,84 до 58,30 м.

Климат данной территории умеренный и влажный, переходной от морского к континентальному, влияние на него оказывают массы воздуха, поступающие с Атлантики – преобладают ветры западных, юго-западных и северо-западных направлений. Характерная для данной территории сильная циклоническая деятельность обуславливает изменчивость погоды и ее неустойчивость на протяжении года. По данным многолетних наблюдений средняя годовая

температура воздуха составляет +4,3 градуса, самый холодный месяц – февраль, самый теплый – июль.

2.2. Геологическое строение

В геологическом строении территории, до изученной глубины 4,0 м, принимают участие современный Почвенно-растительный слой (p IY), а также верхнечетвертичными озерно-ледниковые (lg III) отложения, представленные в пройденных скважинах суглинками полутвердыми, туго - и мягкопластичными, реже текучими.

В соответствии с приложением Б СП изысканный участок строительства относится к II (средней сложности) категории по сложности инженерно-геологических условий.

2.3. Гидрогеологические условия

4. На момент бурения (февраль 2013 г.) подземные воды вскрыты в скважинах №2,7 на глубине от 2,2м. до 3,1 м. Питание подземных вод осуществляется за счет инфильтрации атмосферных осадков. Амплитуда колебания сезонного уровня подземных вод составляет до 1,5м (по режимным наблюдениям ПГО «Севзапгеология»). Максимальный уровень подземных вод следует ожидать в периоды снеготаяния и интенсивных дождей.

5. По химическому составу воды пресные, хлоридно-гидрокарбонатные, магний-кальциевые, слабоагрессивны по отношению к бетону марки W4 по водородному показателю и содержанию агрессивной углекислоты. Коррозионная агрессивность воды по ГОСТ 9. по отношению к свинцовой оболочке кабеля средняя, к алюминиевой - средняя (приложение 9).

Значения коэффициента фильтрации составляют: для суглинков 0,001-0,05 м/сут.

6. Коррозионная агрессивность грунтов по ГОСТ 9. к свинцовой оболочке кабеля – высокая, к алюминиевой – средняя, к стали – средняя (Приложение).

В соответствии СНиП 2.03.11-85 по отношению к бетону нормальной проницаемости грунты неагрессивны.

7. По степени относительной деформации пучения, в соответствии со СНиП 2.05.02-85, суглинки полутвердые (ИГЭ-1) к слабопучинистым, суглинки тугопластичные (ИГЭ-2) к среднепучинистым, суглинки мягкопластичные (ИГЭ-3) и суглинки текучие (ИГЭ-4) к сильнопучинстым.

8 Нормативная глубина промерзания, в соответствии со СП 22.13330.2011 составляет для суглинков – 1,45м,

9. Дорожные работы елательно производить при подсыхании грунтов, во избежание разжижения при использовании техники после схода снега и сильных дождей.

10. По трудности разработки одноковшовым экскаватором грунты относятся по ГЭСН выпуск 4табл. 1-1 к следующим категориям:

Почвенно-растительный слой ………………. . . I (п. 9а);

суглинки I (п. 36а)

11. Сейсмичность территории 5 баллов по карте сейсмического районирования

Суглинистые почвы находятся практически на всей территории Центральной России. Строительство дома на таком грунте требует особого подхода. И начинается весь процесс с возведения фундамента. На суглинке можно возводить определенные типы остовов. Давайте разбираться.

Что это за тип почвы и какой фундамент выбрать?

Суглинком называют почву, состоящую из песка и глины. И последней обычно в таком грунте больше. Но может превалировать и песок в данной смеси (супеси). И если это так, то почва более пористая и сопротивление ее будет меньше, чем при преобладании глины в ее составе. Сухой суглинок - рассыпчатый благодаря песчаному наполнителю. Влажный суглинок - вязкий благодаря глине, именно из-за нее он промерзает и расширяется в холодное время года. Поэтому строители предпочитают возводить фундаменты следующих типов:

  1. Ленточный с жестким армированием. Можно делать как ниже линии промерзания грунта (возможность сделать подвал), так и выше (с обязательной установкой дренажа и утеплением фундамента немассивного сооружения).
  2. Монолитная армированная плита. Закладывается выше уровня промерзания грунта и более известна, как плавающий фундамент.
  3. Свайный типа ТИСЭ. Установка идет на глубину значительно ниже уровня промерзания грунта. Отлично справляется с возложенными на него функциями, но из-за дороговизны возведения, должно иметь объективное обоснование.

Оптимальное время для проведения геологоразведочных манипуляций - весна. Ведь именно в этот период грунтовые воды находятся максимально близко к поверхности. Они могут усложнить строительные работы и даже заставить вас пересмотреть первоначальный выбор фундамента.

На территории, которая планируется под застройку дома, нужно будет пробурить несколько скважин. Делать это удобно садовым буром. Глубина бурения - не менее 30 см от линии промерзания грунта. В процессе можно сразу оценить и определить:

  • состав грунта;
  • уровни залегания и их равномерность;
  • характеристику почвы.

Подробнее о каждом виде фундаментов

Когда на руках имеется оценка грунта, можно приступать к выбору типа фундамента дома. Сюда нужно учесть также изначальный план вашего строения, ваши финансовые ресурсы и трудовые возможности.

Ленточный фундамент


Схема строительства фундамента на суглинистой почве

Этот тип фундамента пригодится если основу вашего дома оставляет кирпич. Это делает строение массивным и тяжелым. И такую нагрузку должен держать устойчивый остов. Поэтому углубив его ниже линии промерзания грунта можно получить не только это, а еще и полноценный подвал. По факту неоценимое помещение - и хранение продуктов, и разводка коммуникационных линий и т. п. Такой фундамент можно сооружать монолитным, а можно собрать из блоков (железобетон). В первом случае, конструкцию нужно хорошо армировать, чтобы придать ей жесткость и прочность.

Плита

Монолитная армированная плита - отличное решение, обеспечивающее защиту дома от пучения суглинка. Она защитит его от перекоса, трещин. Ее устанавливают даже на очень слабых грунтах для домов, гаражей, бань, беседок и других строений. У нее имеется «плавающий» эффект - при пучении она приподнимается и после него становится на изначальное место. С ней не страшны дому и грунтовые воды, залегающие близко к поверхности.

Плита заливается в вырытый котлован. Это армированная монолитная конструкция. Ее толщина может быть разной и связана с планируемым весом дома.

Сваи ТИСЭ

Все чаще в индивидуальном строительстве выполняют свайные остовы типа ТИСЭ. Это избавило от необходимости изготавливать сваи и транспортировать их к месту строительства. Да и забивка их копром также отпала. Для него в заранее выбранных местах вырывают скважины. В их вставляют либо железные трубы, либо бетонные. Их диаметр должен быть равен диаметру будущих свай. В них устанавливают армированный каркас и производят заливку бетонной смесью. После высыхания железные трубы можно извлечь, а можно и оставить. Во втором варианте это сделает сваи намного крепче, но при это существенно увеличит их стоимость.

Специальные загибы арматуры оставляют сверху, чтобы после вплести их арматурный пояс ростверка. Это обеспечит большую прочность конструкции.

Мероприятия по уменьшению пучинистости участка

Суглинок не может непучинится, т. к. в его составе находится глина, которая делает его влажным. И в холодное время года вода, замерзая, расширяется. Выполнение 5 мероприятий позволит значительно снизить этот показатель:

  1. По всему периметру строения формируется дренажная система.
  2. Формирование отмостки здания.
  3. Утепление отмостки дома.
  4. Установка системы водостока и водоотвода с крыши. Обязательно уходящую в ливневый слив.
  5. Полная замена грунта на песчаное основание перед возведением остова.

Посмотрите видео о том, как сделать дренаж почвы на своем участке:

Правильный анализ грунта и выбор типа фундамента по нему - это залог долгой службы вашего строения. И даже суглинистая почва этому не помеха. Любой из предложенных типов фундаментов отлично подойдет для суглинка. Но если не уверены в своих силах - доверьте эту работу профессионалам. Ведь нужно не только правильно определить какой тип фундамента вам нужен, но и правильно его возвести для дома.

Глинистые грунты нередко относят к хорошим, прочным грунтам, в результате чего возникает вопрос, как можно сэкономить на фундаменте, если на строительном участке залегают глины. На самом деле хорошая, прочная глина близко к поверхности встречается редко в отличие от широко распространенных супесей и суглинков. О том, как понять что за грунт на участке, и какой фундамент лучше на глинистой почве, мы и поговорим в этой статье.

Типы и виды глинистых грунтов. Основные характеристики

Глинистые грунты относят к связным грунтам, песчаные – к несвязным. Связность – это способность грунта не рассыпаться как во влажном, так и в сухом состоянии. В зависимости от гранулометрического состава, связные грунты подразделяют на:

  1. Глины. Фракция не крупнее 0,01мм при процентном содержании по массе не менее 50%.
  2. Суглинки. Фракция не крупнее 0,01мм при процентном содержании 30-50% и наличии фракции крупнее 0,01мм до 70%.
  3. Супеси. Фракция не крупнее 0,01м при процентном содержании менее 30%.
  4. Лёссы. Фракция 0,002-0,05мм, содержание глинистых частиц 5-30% при пористости 40-55%.

Для строительства фундамента лучше всего глины, хуже всего – лёссы. Причем эти грунты далеко не всегда пребывают в «чистом» состоянии. Например, широко распространены лессовидные суглинки.

Крайне важным параметром, сильно влияющим на несущую способность связных грунтов, является показатель консистенции. Он зависит от водонасыщения и измеряется в долях единицы. Чем ниже значение, тем тверже (суше) грунт.

Выбор типа фундамента во многом зависит от консистенции глинистого грунта.

Распознать тип глинистого грунта легко исходя из его главной характеристики – связности. Нужно увлажнить грунт до состояния, наиболее близкого к пластилину. Если при попытке раскатать пальцами жгут («колбаску») концы не обсыпаются, это глина или суглинок. Эти два грунта похожи, различать их между собой нет необходимости. Оставшиеся два (супесь и лёсс) также несложно различить между собой. Если образец с ненарушенной структурой в сухом состоянии легко крошится пальцами – это супесь. Лёссы скреплены легко растворимыми в воде солями и в сухом состоянии имеют прочность, характеризуемую выражением «лопата не берет».

Выбор фундамента для твердых и полутвердых глинистых грунтов.

Твердые и полутвердые суглинки и глины являются прекрасным строительным основанием. Оно стабильное, прочное. Позволяет выполнять все виды земляных работ. На этих грунтах целесообразно применение столбчатых фундаментов для каркасных строений и ленточных для стеновых. Для частного строительства применение фундаментных плит или свай сомнительно.

Выбор фундамента для тугопластичных и мягкопластичных глинистых грунтов.

Для этого вида грунтов применяются фундаменты всех видов, от лент и плит, до свай. Для мягкопластичной консистенции редко показано применение отдельно стоящих столбчатых фундаментов. В частном строительстве предпочтение следует отдавать ленточным фундаментам достаточной ширины, утепленным плитам мелкого заглубления, винтовым или буронабивным сваям небольшой длины.

Выбор фундамента для текучепластичных глинистых грунтов.

Связные грунты пластичной и особенно текучепластичной консистенции накладывают ряд ограничений на производство работ. Откосы котлованов (траншей) не устойчивы, склонны к «оплыванию». Сильно затруднено устройство такого типа фундамента, как буронабивные сваи. После бурения скважин они быстро «заиливаются», стенки оседают. На таких грунтах целесообразно применение утепленных фундаментов мелкого заложения (например, утепленная шведская плита), буронабивные сваи в обсадных трубах, буроинъекционные и винтовые сваи. Последние получили широкое распространение в частном строительстве вследствие невысокой стоимости и простоте монтажа.

Ещё одним опасным свойством водонасыщенных связных грунтов является морозное пучение. Оно чаще всего проявляется в мелкодисперсных (связных) грунтах при достаточном количестве воды. Таким образом, мягко и текучепластичные глинистые и суглинистые грунты особенно часто подвержены силам морозного пучения. Мероприятия по противодействию этому фактору делят на две категории: заглубление фундамента не менее глубины промерзания (зависит от климатического района строительства) и утепление цокольной части здания (включая отмостку).

Выбор фундамента для лёссовидных грунтов.

Самым опасным видом связных грунтов является лёсс и лёссовидные суглинки. Это высокопористый грунт, имеющий в сухом состоянии высокую несущую способность. Но при попадании воды он очень быстро размокает, превращается «в кашу», сильно теряет несущую способность и самоуплотняется. Последнее свойство называется просадочностью. Лессовидные грунты делят на 1-ый и 2-ой тип по просадочности. Первый дает самостоятельную усадку под собственным весом при замачивании на величину не более 5см на каждый метр толщи грунта, второй – более 5см.

Для просадочных грунтов рекомендуется применение уширенных фундаментов мелкого заложения (широких фундаментных лент, сплошных плит с армированными монолитными цокольными частями стен) а также сваи, проходящие насквозь просадочную толщу и заведенные в прочные грунты.

К важным мероприятиям при наличии просадочности относят устройство водонепроницаемой отмостки с шириной не менее 1,5м для 1-го и 2,0м для 2-го типа просадочности. Водонесущие коммуникации в местах подпольной прокладки, а также прохождения сквозь цокольную часть должны быть заключены в водонепроницаемые гильзы или лотки.

Рассмотрим более подробно характеристику глинистых грунтов:

  • В их состав входят мельчайшие глинистые частицы (размером менее 0,01 мм, имеющие форму пластинок или чешуек) и частицы песка.
  • Обладают большой пористостью, в связи с этим имеют способность свободно поглощать и удерживать воду. Даже при частичном высыхании удерживают в себе влагу.
  • При замерзании жидкость превращается в лед, при этом увеличивая общий объем грунта. Все породы, которые содержат в себе частицы глины, подвержены этому негативному влиянию, и чем больше ее в составе, тем сильнее проявляется данное свойство.
  • Благодаря консистенции глинистых грунтов, порода обладает связывающими свойствами, которые выражаются в способности сохранять свою форму.
  • В соответствии с содержанием частиц глины, существует классификация глинистых грунтов: глина, суглинки и супеси.
  • Способность деформирования породы без разрывов под воздействием внешних нагрузок, и сохранение формы после ее прекращения, называют пластичностью глинистых грунтов. Степень пластичности определяет строительные свойства глинистых пород: влажность, плотность, сопротивлению сжатию. При увеличении влажности происходит уменьшение плотности и сопротивление сжатию.

Гранулометрический состав и пластичность

Классификация глинистых грунтов более детально:


  • Содержание в супеси глинистых частиц около 10 %, остальной объем занимают песчаные частицы.
  • По своим характеристикам почти не отличается от песка. Бывает двух видов: легкая (в составе до 6% глиняных частиц) и тяжелая (до 10%).
  • Растирая супесь во влажных ладонях, отчетливо заметны частицы песка.
  • Комки в сухом состоянии имеют рассыпчатую структуру и легко крошатся при ударе.
  • Шар, сформированный из увлажненной супеси, при давлении легко рассыпается.
  • Отличается сравнительно низкой пористостью (0,5-0,7), по причине высокого содержания песка.
  • Несущая способность супеси имеет прямую зависимость от влажности глинистых грунтов.

В суглинке содержание глинистых частиц может достигать 30% от общего веса. Как и в супеси, суглинок содержит большую часть песка, поэтому его можно назвать песчано-глинистым грунтом.

  • В сравнении с супесью, отличается большей связанностью, при определенных условиях может сохранять форму, не распадаясь на мелкие куски.
  • Тяжелые суглинки содержат до 30% глинистых частиц, а легкие до 20%.
  • Сухие куски сглинка не так тверды, как глина, при ударении рассыпаются на небольшие куски.
  • При увлажнении суглинок мало пластичен.
  • При растирании, в ладонях четко заметны песчаные частицы.
  • Комки легко раздавливаются.
  • Шар, сформированный из увлажненного суглинка, при надавливании превращается в лепешку, с характерными трещинами по краям.
  • Пористость суглинка несколько выше, чем супеси (0,5­–1).

В глине содержится более 30% глинистых частиц. Среди грунтов, она имеет наибольшую связанность.

  • В сухом состоянии глина твердая, при увлажнении становиться пластичной, вязкой, прилипает к пальцам.
  • При растирании в ладонях песчаных частичек практические не ощущается, комки раздавить довольно затруднительно.
  • При разрезании ножом пласта сырой глины, на гладком срезе не видно песчинок.
  • Скатанный шарик из увлажненной глины при надавливании превращается в лепешку без трещин.
  • Обладает наибольшей пористостью (до 1,1).

Составы с различными примесями

Пылевато-глинистые грунты представляют собой состав, в котором содержится примесь органических веществ (0,05–0,1). По степени засоленности их разделяют:

  • засоленные – содержание солей в составе превышает 5%;
  • незасоленные;

Пылевато-глинистые грунты включают в свой состав специфические породы, которые проявляют неблагоприятные свойства при замачивании:

  • набухающие – грунты, которые при замачивании химическими растворами или водой способны увеличиваться в объеме.
  • просадочные – породы, которые под воздействием внешнего давления или собственного веса, а также при значительном увлажнении водой способны давать просадку.

Среди пылевато-глинистых пород следует отдельно выделить илы и лессы.

  • Лессовые породы имеют характерную макропористость, в их составе содержится карбонат кальция, а при замачивании большим количеством воды под нагрузкой дают просадку, легко размокают и размываются.
  • Илом называют осадок водоемов, который образовался в результате различных микробиологических процессов, имеющий влажность, граничащую с текучестью.

Все вышеперечисленные породы от супесей до глины, при создании определенных гидродинамических условий способны принимать плывунное состояние, превращаясь в густую, вязкую жидкость.

Посмотрите видео: Вывоз грунта

Таблица классификации грунтов по группам

От надежности функционирования системы «основание-фундамент-сооружение» зависит и срок эксплуатации здания, и уровень «качества жизни» его жильцов. Причем, надежность указанной системы базируется именно на характеристиках грунта, ведь любая конструкция должна опираться на надежное основание.

Именно поэтому, успех большинства начинаний строительных компаний зависит от грамотного выбора месторасположения строительной площадки. И такой выбор, в свою очередь, невозможен без понимания тех принципов, на которых основывается классификация грунтов.

С точки зрения строительных технологий существуют четыре основных класса, к которым принадлежат:

Скальные грунты, структура которых однородна и основана на жестких связях кристаллического типа;
- дисперсные грунты, состоящие из несвязанных между собой минеральных частиц;
- природные, мерзлые грунты, структура которых образовалась естественным путем, под действием низких температур;
- техногенные грунты, структура которых образовалась искусственным путем, в результате деятельности человека.


Впрочем, подобная классификация грунтов имеет несколько упрощенный характер и показывает только на степень однородности основания. Исходя из этого, любой скальный грунт представляет собой монолитное основание, состоящее из плотных пород. В свою очередь, любой нескальный грунт основан на смеси минеральных и органических частиц с водой и воздухом.

Разумеется, в строительном деле пользы от такой классификации немного. Поэтому, каждый тип основания разделяют на несколько классов, групп, типов и разновидностей. Подобная классификация грунтов по группам и разновидностям позволяет без труда сориентироваться в предполагаемых характеристиках будущего основания и дает возможность использовать эти знания в процессе строительства дома.

Например, принадлежность к той или иной группе в классификации грунтов определяется характером структурных связей, влияющих на прочностные характеристики основания. А конкретный тип грунта указывает на вещественный состав почвы. Причем, каждая классификационная разновидность указывает на конкретное соотношение компонентов вещественного состава.

Таким образом, глубокая классификация грунтов по группам и разновидностям дает вполне персонифицированное представление обо всех преимущества и недостатки будущей строительной площадки.

Например, в наиболее распространенном на территории европейской части России классе дисперсных грунтов имеется всего две группы, разделяющие эту классификацию на связанные и несвязанные почвы. Кроме того, в отдельную подгруппу дисперсного класса выделены особые, илистые грунты.

Такая классификация грунтов означает, что среди дисперсных грунтов имеются группы, как с ярко выраженными связями в структуре, так и с отсутствием таковых связей. К первой группе связанных дисперсных грунтов относятся глинистые, илистые и заторфованные виды почвы. Дальнейшая классификация дисперсных грунтов позволяет выделить группу с несвязной структурой – пески и крупнообломочные грунты.

В практическом плане подобная классификация грунтов по группам позволяет получить представление о физических характеристиках почвы «без оглядки» на конкретный вид грунта. У дисперсных связных грунтов практически совпадают такие характеристики, как естественная влажность (колеблется в пределах 20%), насыпная плотность (около 1,5 тонн на кубометр), коэффициент разрыхления (от 1,2 до 1,3), размер частиц (около 0,005 миллиметра) и даже число пластичности.

Аналогичные совпадения характерны и для дисперсных несвязных грунтов. То есть, имея представление о свойствах одного вида грунта, мы получаем сведения о характеристиках всех видов почвы из конкретной группы, что позволяет внедрять в процесс проектирования усредненные схемы, облегчающие прочностные расчеты.

Кроме того, помимо вышеприведенных схем, существует и особая классификация грунтов по трудности разработки. В основе этой классификации лежит уровень «сопротивляемости» грунта механическому воздействию со стороны землеройной техники.

Причем, классификация грунтов по трудности разработки зависит от конкретного вида техники и разделяет все типы грунтов на 7 основных групп, к которым принадлежат дисперсные, связанные и несвязанные грунты (группы 1-5) и скальные грунты (группы 6-7).

Песок, суглинок и глинистые грунты (принадлежат к 1-4 группе) разрабатывают обычными экскаваторами и бульдозерами. А вот остальные участники классификации требуют более решительного подхода, основанного на механическом рыхлении или взрывных работах. В итоге, можно сказать, что классификация грунтов по трудности разработки зависит от таких характеристик, как сцепление, разрыхляемость и плотность грунта.

ГЕНЕТИЧЕСКИЕ ТИПЫ ГРУНТОВ ЧЕТВЕРТИЧНОГО ВОЗРАСТА

Типы грунтов Обозначение
Аллювиальные (речные отложения) a
Озерные l
Озерно-аллювиальные
Делювиальные (отложения дождевых и талых вод на склонах и у подножия возвышенностей) d
Аллювиально-делювиальные ad
Эоловые (осаждения из воздуха): эоловые пески, лессовые грунты L
Гляциальные (ледниковые отложения) g
Флювиогляциальные (отложении ледниковых потоков) f
Озерно-ледниковые lg
Элювиальные (продукты выветривания горных пород, оставшиеся на месте образования) е
Элювиально-делювиальное ed
Пролювиальные (отложения бурных дождевых потоков в горных областях) p
Аллювиально-пролювиальные ap
Морские m

РАСЧЕТНЫЕ ФОРМУЛЫ ОСНОВНЫХ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТОВ

ПЛОТНОСТЬ ЧАСТИЦ ρ s ПЕСЧАНЫХ И ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ

КЛАССИФИКАЦИЯ СКАЛЬНЫХ ГРУНТОВ

Грунт Показатель
По пределу прочности на одноосное сжатие в водонасыщенном состоянии, МПа
Очень прочный R c > 120
Прочный 120 ≥ R c > 50
Средней прочности 50 ≥ R c > 15
Малопрочный 15 ≥ R c > 5
Пониженной прочности 5 ≥ R c > 3
Низкой прочности 3 ≥ R c ≥ 1
Весьма низкой прочности R c < 1
По коэффициенту размягчаемости в воде
Неразмягчаемый K saf ≥ 0,75
Размягчаемый K saf < 0,75
По степени растворимости в воде (осадочные сцементированные), г/л
Нерастворимый Растворимость менее 0,01
Труднорастворимый Растворимость 0,01—1
Среднерастворимый − || − 1—10
Легкорастворимый − || − более 10

КЛАССИФИКАЦИЯ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО ГРАНУЛОМЕТРИЧЕСКОМУ СОСТАВУ

ПОДРАЗДЕЛЕНИЕ КРУПНООБЛОМОЧНЫХ И ПЕСЧАНЫХ ГРУНТОВ ПО СТЕПЕНИ ВЛАЖНОСТИ S r

ПОДРАЗДЕЛЕНИЕ ПЕСЧАНЫХ ГРУНТОВ ПО ПЛОТНОСТИ СЛОЖЕНИЯ

Песок Подразделение по плотности сложения
плотный средней плотности рыхлый
По коэффициенту пористости
Гравелистый, крупный и средней крупности e < 0,55 0,55 ≤ e ≤ 0,7 e > 0,7
Мелкий e < 0,6 0,6 ≤ e ≤ 0,75 e > 0,75
Пылеватый e < 0,6 0,6 ≤ e ≤ 0,8 e > 0,8
По удельному сопротивлению грунта, МПа, под наконечником (конусом) зонда при статическом зондировании
q c > 15 15 ≥ q c ≥ 5 q c < 5
Мелкий независимо от влажности q c > 12 12 ≥ q c ≥ 4 q c < 4
Пылеватый:
маловлажный и влажный
водонасыщенный

q c > 10
q c > 7

10 ≥ q c ≥ 3
7 ≥ q c ≥ 2

q c < 3
q c < 2
По условному динамическому сопротивлению грунта МПа, погружению зонда при динамическом зондировании
Крупный и средней крупности независимо от влажности q d > 12,5 12,5 ≥ q d ≥ 3,5 q d < 3,5
Мелкий:
маловлажный и влажный
водонасыщенный

q d > 11
q d > 8,5

11 ≥ q d ≥ 3
8,5 ≥ q d ≥ 2

q d < 3
q d < 2
Пылеватый маловлажный и влажный q d > 8,8 8,5 ≥ q d ≥ 2 q d < 2

ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ЧИСЛУ ПЛАСТИЧНОСТИ

ПОДРАЗДЕЛЕНИЕ ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ПО ПОКАЗАТЕЛЮ ТЕКУЧЕСТИ

ПОДРАЗДЕЛЕНИЕ ИЛОВ ПО КОЭФФИЦИЕНТУ ПОРИСТОСТИ

ПОДРАЗДЕЛЕНИЕ САПРОПЕЛЕЙ ПО ОТНОСИТЕЛЬНОМУ СОДЕРЖАНИЮ ОРГАНИЧЕСКОГО ВЕЩЕСТВА

НОРМАТИВНЫЕ ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ Е ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ

Возраст и происхождение грунтов Грунт Показатель текучести Значения Е , МПа, при коэффициенте пористости е
0,35 0,45 0,55 0,65 0,75 0,85 0,95 1,05 1,2 1,4 1,6
Четвертичные отложения: иллювиальные, делювиальные, озерно-аллювиальные Супесь 0 ≤ I L ≤ 0,75 - 32 24 16 10 7 - - - - -
Суглинок 0 ≤ I L ≤ 0,25 - 34 27 22 17 14 11 - - - -
0,25 < I L ≤ 0,5 - 32 25 19 14 11 8 - - - -
0,5 < I L ≤ 0,75 - - - 17 12 8 6 5 - - -
Глина 0 ≤ I L ≤ 0,25 - - 28 24 21 18 15 12 - - -
0,25 < I L ≤ 0,5 - - - 21 18 15 12 9 - - -
0,5 < I L ≤ 0,75 - - - - 15 12 9 7 - - -
флювиогляциальные Супесь 0 ≤ I L ≤ 0,75 - 33 24 17 11 7 - - - - -
Суглинок 0 ≤ I L ≤ 0,25 - 40 33 27 21 - - - - - -
0,25<I L ≤0,5 - 35 28 22 17 14 - - - - -
0,5 < I L ≤ 0,75 - - - 17 13 10 7 - - - -
моренные Супесь и суглинок I L ≤ 0,5 75 55 45 - - - - - - - -
Юрские отложения оксфордского яруса Глина − 0,25 ≤ I L ≤ 0 - - - - - - 27 25 22 - -
0 < I L ≤ 0,25 - - - - - - 24 22 19 15 -
0,25 < I L ≤ 0,5 - - - - - - - - 16 12 10

Определение модуля деформации в полевых условиях

Модуль деформации определяют испытанием грунта статической нагрузкой, передаваемой на штамп. Испытания проводят в шурфах жестким круглым штампом площадью 5000 см 2 , а ниже уровня грунтовых вод и на больших глубинах — в скважинах штампом площадью 600 см 2 .


Зависимость осадки штампа s от давления р

1 — резиновая камера; 2 — скважина; 3 — шланг; 4 — баллон сжатого воздуха: 5 — измерительное устройство

Зависимость деформаций стенок скважины Δr от давления р

Для определения модуля деформации используют график зависимости осадки от давления, на котором выделяют линейный участок, проводят через него осредняющую прямую и вычисляют модуль деформации Е в соответствии с теорией линейно-деформируемой среды по формуле

E = (1 − ν 2)ωd Δp / Δs

Где v — коэффициент Пуассона (коэффициент поперечной деформации), равный 0,27 для крупнообломочных грунтов, 0,30 для песков и супесей, 0,35 для суглинков и 0,42 для глин; ω — безразмерный коэффициент, равный 0,79; d р — приращение давления на штамп; Δs — приращение осадки штампа, соответствующее Δр .

При испытании грунтов необходимо, чтобы толщина слоя однородного грунта под штампом была не менее двух диаметров штампа.

Модули деформации изотропных грунтов можно определять в скважинах с помощью прессиометра. В результате испытаний получают график зависимости приращения радиуса скважины от давления на ее стенки. Модуль деформации определяют на участке линейной зависимости деформации от давления между точкой р 1 , соответствующей обжатию неровностей стенок скважины, и точкой р 2 E = kr 0 Δp / Δr

Где k — коэффициент; r 0 — начальный радиус скважины; Δр — приращение давления; Δr — приращение радиуса, соответствующее Δр .


Коэффициент k определяется, как правило, путем сопоставления данных прессиометрии с результатами параллельно проводимых испытаний того же грунта штампом. Для сооружений II и III класса допускается принимать в зависимости от глубины испытания h следующие значения коэффициентов k в формуле: при h < 5 м k = 3; при 5 м ≤ h ≤ 10 м k h ≤ 20 м k = 1,5.


Для песчаных и пылевато-глинистых грунтов допускается определять модуль деформации на основе результатов статического и динамического зондирования грунтов. В качестве показателей зондирования принимают: при статическом зондировании — сопротивление грунта погружению конуса зонда q c , а при динамическом зондирований — условное динамическое сопротивление грунта погружению конуса q d . Для суглинков и глин E = 7q c и E = 6q d ; для песчаных грунтов E = 3q c , а значения Е по данным динамического зондирования приведены в таблице. Для сооружений I и II класса является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов штампами.

ЗНАЧЕНИЯ МОДУЛЕЙ ДЕФОРМАЦИИ Е ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

Для сооружений III класса допускается определять Е только по результатам зондирования.


Определение модуля деформации в лабораторных условиях

В лабораторных условиях применяют компрессионные приборы (одометры), в которых образец грунта сжимается без возможности бокового расширения. Модуль деформации вычисляют на выбранном интервале давлений Δр = p 2 − p 1 графика испытаний (рис. 1.4) по формуле

E oed = (1 + e 0)β / a
где e 0 — начальный коэффициент пористости грунта; β — коэффициент, учитывающий отсутствие поперечного расширения грунта в приборе и назначаемый в зависимости от коэффициента Пуассона v ; а — коэффициент уплотнения;
a = (e 1 − e 2)/(p 2 − p 1)

СРЕДНИЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ПУАССОНА v β

КОЭФФИЦИЕНТЫ m ДЛЯ АЛЛЮВИАЛЬНЫХ, ДЕЛЮВИАЛЬНЫХ, ОЗЕРНЫХ И ОЗЕРНО-АЛЛЮВИАЛЬНЫХ ЧЕТВЕРТИЧНЫХ ГРУНТОВ ПРИ ПОКАЗАТЕЛЕ ТЕКУЧЕСТИ I L ≤ 0,75

НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИИ c φ , град, ПЕСЧАНЫХ ГРУНТОВ

Песок Характеристика Значения с и φ при коэффициенте пористости e
0,45 0,55 0,65 0,75
Гравелистый и крупный с
φ
2
43
1
40
0
38
-
-
Средней крупности с
φ
3
40
2
38
1
35
-
-
Мелкий с
φ
6
38
4
36
2
32
0
28
Пылеватый с
φ
8
36
6
34
4
30
2
26

НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИЯ c , кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ , град, ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ЧЕТВЕРТИЧНЫХ ОТЛОЖЕНИЙ

Грунт Показатель текучести Характеристика Значения с и φ при коэффициенте пористости е
0,45 0,55 0,65 0,75 0,85 0,95 1,05
Супесь 0<I L ≤0,25 с
φ
21
30
17
29
15
27
13
24
-
-
-
-
-
-
0,25<I L ≤0,75 с
φ
19
28
15
26
13
24
11
21
9
18
-
-
-
-
Суглинок 0<I L ≤0,25 с
φ
47
26
37
25
31
24
25
23
22
22
19
20
-
-
0,25<I L ≤0,5 с
φ
39
24
34
23
28
22
23
21
18
19
15
17
-
-
0,5<I L ≤0,75 с
φ
-
-
-
-
25
19
20
18
16
16
14
14
12
12
Глина 0<I L ≤0,25 с
φ
-
-
81
21
68
20
54
19
47
18
41
16
36
14
0,25<I L ≤0,5 с
φ
-
-
-
-
57
18
50
17
43
16
37
14
32
11
0,5<I L ≤0,75 с
φ
-
-
-
-
45
15
41
14
36
12
33
10
29
7

ЗНАЧЕНИЯ УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ФИЛЬТРАЦИИ ГРУНТОВ

ЗНАЧЕНИЯ СТАТИСТИЧЕСКОГО КРИТЕРИЯ

Число
определений
v Число
определений
v Число
определений
v
6 2,07 13 2,56 20 2,78
7 2,18 14 2,60 25 2,88
8 2,27 15 2,64 30 2,96
9 2,35 16 2,67 35 3,02
10 2,41 17 2,70 40 3,07
11 2,47 18 2,73 45 3,12
12 2,52 19 2,75 50 3,16

ТАБЛИЦА 1.22. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА t α ПРИ ОДНОСТОРОННЕЙ ДОВЕРИТЕЛЬНОЙ ВЕРОЯТНОСТИ α

Число
определений
n −1 или n −2
t α при α Число
определений
n −1 или n −2
t α при α
0,85 0,95 0,85 0,95
2 1,34 2,92 13 1,08 1,77
3 1,26 2,35 14 1,08 1,76
4 1,19 2,13 15 1,07 1,75
5 1,16 2,01 16 1,07 1,76
6 1,13 1,94 17 1,07 1,74
7 1,12 1,90 18 1,07 1,73
8 1,11 1,86 19 1,07 1,73
9 1,10 1,83 20 1,06 1,72
10 1,10 1,81 30 1,05 1,70
11 1,09 1,80 40 1,06 1,68
12 1,08 1,78 60 1,05 1,67
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.