Чпу по дереву своими руками чертежи. Самодельный фрезерный станок с ЧПУ: собираем своими руками

При выборе фрезерного станка(CNC Router) с чпу определитесь:

1. с каким материалом Вы собираетесь работать. От этого зависят требования к жесткости конструкции фрезерного станка и её типу.

Например, ЧПУ станок из фанеры позволит обрабатывать лишь дерево(в том числе фанеру) и пластики(в том числе композитные материалы - пластик с фольгой).

На фрезерном станке из алюминия можно обрабатывать уже и заготовки цветных металлов, при этом увеличится и скорость обработки изделий из дерева.

Для обработки стали фрезерные станки из алюминия не пригодны, здесь уже нужны массивные станки с литой станиной из чугуна, при этом и обработка цветных металлов на таких фрезерных станках будет с большей эффективностью.

2. с размером заготовок и размером рабочего поля фрезерного станка. Это определяет требования к механике станка с ЧПУ.

При выборе станка уделите внимание изучению механики станка, от её выбора зависят возможности станка, а заменить её без существенной переделки конструкции невозможно!

Механика фрезерного ЧПУ станка из фанеры и алюминия зачастую одинаковая. Подробнее ниже по тексту.

Но чем больше размер рабочего поля станка тем более жесткие и дорогие направляющие линейного перемещения потребуются для его сборки.

При выборе станков для решения задач изготовления высоких деталей, с большими перепадами высот, существует распространенное заблуждение в том, что достаточно выбрать станок с большим рабочим ходом по оси Z. Но даже при большом ходе по оси Z, невозможно изготовить деталь с крутыми склонами, если высота детали больше рабочей длины фрезы, то есть более 50мм.

Рассмотрим устройство фрезерного станка и варианты выбора на примере станков с чпу серии Моделист.

A) Выбор конструкции CNC станка

Существует два варианта построения CNC станков:

1) конструкции с подвижным столом , рисунок 1.
2) конструкция с подвижным порталом , рисунок 2.

Рисунок 1 Фрезерный станок с подвижным столом

Преимущества конструкции станка с подвижным столом - это простота реализации, большая жесткость станка ввиду того, что портал неподвижен и закреплен к раме (основанию) станка.

Недостаток - большие размеры, по сравнению с конструкцией с подвижным порталом, и невозможность обработки тяжелых деталей в связи с тем, что подвижный стол несет на себе деталь. Данная конструкция вполне подходит для обработки дерева и пластиков, то есть легких материалов.

рисунок 2 Фрезерный станок с подвижным порталом(портальный станок)

Преимущества конструкциифрезерного станка с подвижным порталом:

Жесткий стол, выдерживающий большой вес заготовки,

Неограниченная длина заготовки,

Компактность,

Возможность исполнения станка без стола (например, для установки поворотной оси).

Недостатки:

Меньшая жесткость конструкции.

Необходимость применения более жестких (и дорогих) направляющих (ввиду того, что портал "висит" на направляющих, а не закреплен на жесткой станине станка, как в конструкции с подвижным столом).

B) Выбор механики Фрезерного станка с ЧПУ

Механика представлена (см. цифры на рис.1, рис.2 и рис.3):

3 - держателями направляющих

4 - линейными подшипниками или втулками скольжения

5 - опорными подшипниками (для крепления ходовых винтов)

6 - ходовыми винтами

10 - муфтой соединения вала ходового винта с валом шаговых двигателей (ШД)

12 - ходовой гайкой

рисунок 3

Выбор системы линейного перемещения фрезерного станка (направляющие - линейные подшипники, ходовой винт - ходовая гайка).

В качестве направляющих могут использоваться:

1) роликовые направляющие качения , рисунок 4,5

Рисунок 4

Рисунок 5

Этот тип направляющих попал в конструкции любительских лазеров и станков из мебельной промышленности,рисунок 6

Недостаток - низкая нагрузочная способность и низкий ресурс, поскольку изначально не предназначены для использования в станках с большим количеством перемещений и высокими нагрузками, невысокая прочность алюминиевого профиля направляющих приводит к развалу, рисунок 5 и как следствие неустранимый люфт, что делает непригодным дальнейшей использование станка.

Ещё один вариант роликовых направляющих, рисунок 7, также не пригодный для высоких нагрузок и потому используется только в лазерных станках.

Рисунок 7

2) круглые направляющие , представляют собой стальной вал изготовленный из высококачественной износоустойчивой подшипниковой стали со шлифованной поверхностью, с поверхностной закалкой и жестким хромированием, показаны под цифрой 2 на рисунке 2.

Это оптимальное решение для любительских конструкций, т.к. цилиндрические направляющие имеют достаточную жесткость для обработки мягких материалов при небольших размерах станка с чпу при относительно низкой стоимости. Ниже представлена таблица выбора диаметра цилиндрических направляющих в зависимости от максимальной длины и минимальной величины прогиба.

Некоторые китайские производители дешёвых станков устанавливаю направляющие не достаточного диаметра, что ведет к снижению точности, например, при использовании на станке из алюминия на рабочей длине 400мм направляющих диаметром 16мм приведет к прогибу в центре под собственным весом на 0,3..0,5мм(зависит от веса портала).

При правильном выборе диаметра вала, конструкция станков с их использованием получается достаточно прочная, большой вес валов придает конструкции хорошую устойчивость, общую жесткость конструкции. На станках размером более метра применение круглых направляющих требует значительного увеличения диаметра для сохранения минимального прогиба, что делает применение круглых направляющих неоправданно дорогим и тяжелым решением.

Длина по оси Станок из фанеры Станок из алюминия для работ по дереву Станок из алюминия для работ по алюминию
200мм 12 12 16 12
300мм 16 16 20 16
400мм 16 20 20 16
600мм 20 25 30 16
900мм 25 30 35 16

3) профильные рельсовые направляющие
На смену полированным валам на станках большого габарита приходят профильные направляющие. Использование опоры по всей длине направляющей позволяет использовать направляющие значительно меньших диаметров. Но использование данного вида направляющих накладывает высокие требования к жесткости несущей рамы станка, поскольку станины из листового дюраля или листовой стали сами по себе не являются жесткими. Малый диаметр рельсовых направляющих требует использования в конструкции станка толстостенной стальной проф трубы или конструкционного алюминиевого профиля большого сечения для получения необходимой жесткости и несущей способности рамы станка.
Использование особой формы профильного рельса позволяет получить лучшую износоустойчивость в сравнении с другими типами направляющих.

Рисунок 8

4) Цилиндрические направляющие на опоре
Цилиндрические направляющие на опоре являются более дешевым аналогом профильных направляющих.
Также как и профильные требуют использования в раме станка не листовых материалов, а проф трубы большого сечения.

Преимущества - отсутствие прогиба и отсутствие эффекта рессор. Цена вдвое выше, чем у цилиндрических направляющих. Их использование оправдано при длине перемещения выше 500мм.

рисунок 9 Цилиндрические направляющие на опоре

Перемещение можно выполнить как на втулках (трение скольжения) - рис.10 слева, так и с использованием линейных подшипников (трение качения) - рис. 10 справа.

рисунок 10 Втулки и линейные подшипники

Недостаток втулок скольжения - износ втулок, приводящий к появлению люфтов, и повышенное усилие на преодоление трения скольжения, требующее применения более мощных и дорогих шаговых двигателей (ШД). Их преимущество - низкая цена.

В последнее время цена на линейные подшипники настолько снизилась, что их выбор экономически целесообразен даже в недорогих хоббийных конструкциях. Преимущество линейных подшипников в меньшем коэффициенте трения по сравнению с втулками скольжения, а, соответственно, большая часть мощности шаговых моторов идет на полезные перемещения, а не на борьбу с трением, что делает возможным применение моторов меньшей мощности.

Для преобразования вращательного движения в поступательное на ЧПУ станке необходимо применение винтовой передачи (ходового винта ). За счет вращения винта, гайка движется поступательно. В фрезерно-гравировальных станках может применяться винтовые передачи скольжения и винтовые передачи качения .

Недостаток винтовой передачи скольжения - довольно большое трение, ограничивающее её использование при больших оборотах и приводящее к износу гайки.

Винтовые передачи скольжения:

1) метрический винт. Достоинство метрического винта - низкая цена. Недостатки - низкая точность, малый шаг и низкая скорость перемещения. Максимальная скорость перемещения винта (velocity mm`s per min) исходя из максимальных оборотов ШД (600об/мин). Лучшие драйвера сохранят момент вплоть до 900об/м. При такой скорости вращения можно получить линейное перемещение:

Для винта М8 (шаг резьбы 1,25мм) - не более 750мм/мин,

Для винта М10 (шаг резьбы 1,5мм) - 900мм/мин,

Для винта М12 (шаг резьбы 1,75мм) - 1050мм/мин,

Для винта М14 (шаг резьбы 2,00мм) - 1200мм/мин.

При максимальных оборотах у мотора останется порядка 30-40% от его первоначально указанного момента, и данный режим используется исключительно для холостых перемещений.

При работе на такой низкой подаче повышенные расход на фрезы, уже через несколько часов работы на фрезах образуется нагар.

2) трапецеидальный винт . В двадцатом веке занимал лидирующее положение в станках для металлообработки, до появления ШВП. Достоинство - высокая точность, большой шаг резьбы, а следовательно, и высокая скорость перемещения. Следует обращать на вид обработки, чем более гладкая и ровная поверхность винта тем больший срок службы у передачи винт-гайка. Катанные винты имеют преимущество перед нарезными винтами. Недостатки трапецеидальной передачи винт-гайка - достаточно высокая цена в сравнении с метрическим винтом, трение скольжение требует применения шаговых двигателей достаточно большой мощности. Основное распространение получили винты TR10x2 (диаметр 10мм, шаг резьбы 2мм), TR12x3 (диаметр 12мм, шаг резьбы 3мм) и TR16x4 (диаметр 16мм, шаг резьбы 4мм). В станках маркировка такой передачи TR10x2,TR12x3,TR12x4,TR16x4

Винтовые передачи качения:

Шарико-винтовая передача (ШВП). В Шарико-винтовой передаче трение скольжения заменено на трение качения. Для достижения этого в ШВП винт и гайка разделены шариками, которые катаются в углублениях резьбы винта. Рециркуляция шариков обеспечена с помощью возвратных каналов, которые идут параллельно оси винта.

Рисунок 12

ШВП обеспечивает возможность работы при больших нагрузках, хорошую плавность хода, значительно увеличенный ресурс(долговечность) за счет уменьшения трения и смазки, увеличенный коэффициент полезного действия(до 90%) за счет меньшего трения. Она способна работать на больших скоростях, обеспечивает выокую точность позиционирования, высокую жёсткость и отсутствие люфта. То есть станки с использованием ШВП обладают значительно большим ресурсом, но имеют более высокую цену. В станках имеют маркировку SFU1605, SFU1610, SFU2005, SFU2010, где SFU -одинарная гайка, DFU - двойная гайка, первые две цифры - диаметр винта, вторые две - шаг резьбы.

Ходовой винт фрезерного станка может крепиться следующим образом:

1) Конструкция с одним опорным подшипником. Крепление осуществляется с одной стороны винта гайкой к опорному подшипнику. Вторая сторона винта через жесткую муфту крепится к валу шагового двигателя. Достоинства - простота конструкции, недостаток - повышенная нагрузка на подшипник шагового двигателя.

2) Конструкция с двумя опорными подшипниками в распор. В конструкции используется два опорных подшипника во внутренних сторонах портала. Недостаток конструкции - более сложная реализация по сравнению с вариантом 1). Достоинство - меньшие вибрации, если винт не идеально ровный.

3) Конструкция с двумя опорными подшипниками в натяг. В конструкции используется два опорных подшипника на внешних сторонах портала. Достоинства - не деформируется винт, в отличие от второго варианта. Недостаток - более сложная реализация конструкции, по сравнению с первым и вторым вариантом.

Ходовые гайки бывают:

Бронзовые безлюфтовые. Достоинство таких гаек - долговечность. Недостатки - сложны в изготовлении (как следствие - высокая цена) и имеют большой коэффициент трения в сравнении с с гайками из капролона.

Капролоновые безлюфтовые. В настоящее время капролон получил широкое распространение и все чаще заменяет метал в профессиональных конструкциях. Ходовая гайка из графитонаполненного капролона имеет значительно меньший коэффициент трения по сравнению с той же бронзой.

рисунок 14 Ходовая гайка из графитонаполненного капролона

В гайке шарико-винтовой пары (ШВП) трение скольжения заменено на трение качения. Достоинства - низкое трение, возможность работы на высоких скоростях вращения. Недостаток - высокая цена.

Выбор соединительной муфты

1) соединение с использованием жесткой муфты. Достоинства: жесткие муфты передают больший крутящий момент с вала на вал, нет люфта при больших нагрузках. Недостатки: требуют точной установки, так как эта муфта не компенсирует несоосность и перекос валов.

2) соединение с использованием сильфонной (разрезной) муфты. Преимуществом использование сильфонной муфты является то, что ее использование позволяет компенсировать несоосность установки ходового вала и оси шагового двигателя до 0,2мм и перекос до 2,5 градусов, в следствии чего меньшая нагрузка на подшипник шагового двигателя и больший ресурс шагового двигателя. Она также позволяет гасить возникающие вибрации.

3) соединение с использованием кулачковой муфты. Достоинства: позволяет гасить возникающие вибрации, передают больший крутящий момент с вала на вал, в сравнении с разрезной. Недостатки: меньшая компенсация несоосности, несоосность установки ходового вала и оси шагового двигателя до 0,1мм и перекос до 1,0 градуса.

C) Выбор электроники

Электроника представлена (см. рис. 1 и 2):

7 - контроллером шаговых двигателей

8 - блоком питания контроллера ШД

11 - шаговыми двигателями

Существуют 4х-проводные, 6-ти проводные и 8-ми проводные шаговые двигатели . Всех их можно использовать. В большинстве современных контролеров подключение осуществляется по четырех проводной схеме. Остальные проводники не используются.

При выборе станка важно чтоб шаговый двигатель был достаточной мощности для перемещения рабочего инструмента без потери шагов, то есть без пропусков. Чем больше шаг резьбы винта тем более мощные потребуются моторы. Обычно чем больше ток двигателя тем больше и его крутящий момент(мощность).

Многие моторы имеют 8 выводов для каждой полуобмотки в отдельности - это позволяет подключить мотор с последовательно соединенными обмотками либо параллельно. При параллельно соединенных обмотках вам потребуется драйвер на в два раза больший ток, чем при последовательно соединенных обмотках, но при этом будет достаточно в два раза меньшего напряжения.

При последовательном наоборот - для достижения номинального момента потребуется в два раза меньший ток, но для достижения максимальных оборотов - в два раза большее напряжение.

Величина перемещения за один шаг, обычно, 1,8 градуса.

Для 1,8 получается 200 шагов на один полный оборот. Соответственно для вычисления величины количество шагов на мм («Шагов на мм» (Step per mm) ) пользуемся формулой: кол-во шагов на оборот / шаг винта. Для винта с шагом 2мм получим: 200/2=100 шагов/мм.

Выбор контроллера

1) DSP контроллеры. Достоинства - возможность выбора портов (LPT , USB, Ethernet) и независимость частот сигналов STEP и DIR от работы операционной системы. Недостатки - высокая цена (от 10 000 руб.).

2) Контроллеры от китайских производителей для любительских станков. Достоинства - низкая цена (от 2500 руб.). Недостаток - повышенные требования к стабильности работы операционной системы, требует соблюдения определенных правил настройки, предпочтительно использование выделенного компьютера, доступны только версии LPT.

3) Любительские конструкции контроллеров на дискретных элементах. Низкая цена китайских контроллеров вытесняет любительские конструкции.

Наибольшее распространение в любительских конструкциях станков получили китайские контроллеры.

Выбор блока питания

Для двигателей Nema17 необходим блок питания не менее 150Вт

Для двигателей Nema23 необходим блок питания не менее 200Вт

Итак, вы решили построить самодельный ЧПУ фрезерный станок или, может быть, вы просто над этим только задумываетесь и не знаете с чего начать? Есть много преимуществ в наличии машины с ЧПУ. Домашние станки могут производить фрезерование и резать практически все материалы. Будь вы любитель или мастер, это открывает большие горизонты для творчества. Тот факт, что один из станков может оказаться в вашей мастерской, еще более соблазнителен.

Есть много причин, по которым люди хотят построить собственный фрезерный станок ЧПУ своими руками. Как правило, это происходит потому, что мы просто не можем позволить себе купить его в магазине или от производителя, и в этом нет ничего удивительного, ведь цена на них немаленькая. Или же вы можете быть похожи на меня и получать массу удовольствия от собственной работы и создания чего-то уникального. Вы можете просто заниматься этим для получения опыта в машиностроении.

Личный опыт

Когда я впервые начал разрабатывать, продумывать и делать первый ЧПУ фрезер своими руками, на создание проекта ушел примерно один день. Затем, когда начал покупать части, я провел небольшое исследование. И нашел кое-какие сведения в различных источниках и форумах, что привело к появлению новых вопросов:

  • Мне действительно нужны шарико-винтовые пары, или обычные шпильки и гайки будут работать вполне нормально?
  • Какой линейный подшипник лучше, и могу ли я его себе позволить?
  • Двигатель с какими параметрами мне нужен, и лучше использовать шаговик или сервопривод?
  • Деформируется ли материал корпуса слишком сильно при большом размере станка?
  • И т.п.

К счастью, на некоторые из вопросов я смог ответить благодаря своей инженерно-технической базе, оставшейся после учебы. Тем не менее, многие из проблем, с которыми я бы столкнулся, не могли быть рассчитаны. Мне просто нужен был кто-то с практическим опытом и информацией по этому вопросу.

Конечно, я получил много ответов на свои вопросы от разных людей, многие из которых противоречили друг другу. Тогда мне пришлось продолжить исследования, чтобы выяснить, какие ответы стоящие, а какие – мусор.

Каждый раз, когда у меня возникал вопрос, ответ на который я не знал, мне приходилось повторять тот же процесс. По большему счету это связано с тем, что у меня был ограниченный бюджет и хотелось взять лучшее из того, что можно купить за мои деньги. Такая же ситуация у многих людей, создающих самодельный фрезерный станок с ЧПУ.

Комплекты и наборы для сборки фрезеров с ЧПУ своими руками

Да, есть доступные комплекты станков для ручной сборки, но я еще не видел ни одного, который можно было бы подстроить под определенные нужды.

Также нет возможности вносить изменения в конструкцию и тип станка, а ведь их много, и откуда вы знаете, какой из них подойдет именно вам? Независимо от того, насколько хороша инструкция, если конструкция продумана плохо, то и конечная машина будет плохой.

Вот почему вам нужно быть осведомленным относительно того, что вы строите и понимать какую роль играет каждая деталь!

Руководство

Это руководство нацелено на то, чтобы не дать вам совершить те же ошибки, на которые я потратил свое драгоценное время и деньги.

Мы рассмотрим все компоненты вплоть до болтов, глядя на преимущества и недостатки каждого типа каждой детали. Я расскажу о каждом аспекте проектирования и покажу, как создать ЧПУ фрезерный станок своими руками. Проведу вас через механику к программному обеспечению и всему промежуточному.

Имейте в виду, что самодельные чертежи станков с ЧПУ предлагают немного способов решения некоторых проблем. Это часто приводит к «неаккуратной» конструкции или неудовлетворительному функционированию машины. Вот почему я предлагаю вам сначала прочитать это руководство.

ДАВАЙТЕ НАЧНЕМ

ШАГ 1: Ключевые конструктивные решения

В первую очередь необходимо рассмотреть следующие вопросы:

  1. Определение подходящей конструкции конкретно для вас (например, если будете делать станок по дереву своими руками).
  2. Требуемая площадь обработки.
  3. Доступность рабочего пространства.
  4. Материалы.
  5. Допуски.
  6. Методы конструирования.
  7. Доступные инструменты.
  8. Бюджет.

ШАГ 2: Основание и ось X-оси

Тут рассматриваются следующие вопросы:

  1. Проектирование и построение основной базы или основания оси X.
  2. Жестко закрепленные детали.
  3. Частично закрепленные детали и др.

ШАГ 3: Проектирование козловой оси Y

  1. Проектирование и строительство портальной оси Y.
  2. Разбивка различных конструкций на элементы.
  3. Силы и моменты на портале и др.

ШАГ 4: Схема сборки оси Z

Здесь рассматриваются следующие вопросы:

  1. Проектирование и сборка сборки оси Z.
  2. Силы и моменты на оси Z.
  3. Линейные рельсы / направляющие и расстояние между подшипниками.
  4. Выбор кабель-канала.

ШАГ 5: Линейная система движения

В этом пункте рассматриваются следующие вопросы:

  1. Подробное изучение систем линейного движения.
  2. Выбор правильной системы конкретно для вашего станка.
  3. Проектирование и строительство собственных направляющих при малом бюджете.
  4. Линейный вал и втулки или рельсы и блоки?

ШАГ 6: Компоненты механического привода

В этом пункте рассматриваются следующие аспекты:

  1. Детальный обзор частей привода.
  2. Выбор подходящих компонентов для вашего типа станка.
  3. Шаговые или серводвигатели.
  4. Винты и шарико-винтовые пары.
  5. Приводные гайки.
  6. Радиальные и упорные подшипники.
  7. Муфта и крепление двигателя.
  8. Прямой привод или редуктор.
  9. Стойки и шестерни.
  10. Калибровка винтов относительно двигателей.

ШАГ 7: Выбор двигателей

В этом шаге необходимо рассмотреть:

  1. Подробный обзор двигателей с ЧПУ.
  2. Типы двигателей с ЧПУ.
  3. Как работают шаговые двигатели.
  4. Типы шаговых двигателей.
  5. Как работают сервомоторы.
  6. Типы серводвигателей.
  7. Стандарты NEMA.
  8. Выбор правильного типа двигателя для вашего проекта.
  9. Измерение параметров мотора.

ШАГ 8: Конструкция режущего стола

  1. Проектирование и строительство собственных столов при малом бюджете.
  2. Перфорированный режущий слой.
  3. Вакуумный стол.
  4. Обзор конструкций режущего стола.
  5. Стол можно вырезать при помощи фрезерного станка с ЧПУ по дереву.

ШАГ 9: Параметры шпинделя

В этом шаге рассматриваются следующие вопросы:

  1. Обзор шпинделей с ЧПУ.
  2. Типы и функции.
  3. Ценообразование и затраты.
  4. Варианты монтажа и охлаждения.
  5. Системы охлаждения.
  6. Создание собственного шпинделя.
  7. Расчет нагрузки стружки и силы резания.
  8. Нахождение оптимальной скорости подачи.

ШАГ 10: Электроника

В этом пункте рассматриваются следующие вопросы:

  1. Панель управления.
  2. Электропроводка и предохранители.
  3. Кнопки и переключатели.
  4. Круги MPG и Jog.
  5. Источники питания.

ШАГ 11: Параметры контроллера Программного Управления

В этом шаге рассматриваются следующие вопросы:

  1. Обзор контроллера ЧПУ.
  2. Выбор контроллера.
  3. Доступные опции.
  4. Системы с замкнутым контуром и разомкнутым контуром.
  5. Контроллеры по доступной цене.
  6. Создание собственного контроллера с нуля.

ШАГ 12. Выбор программного обеспечения

В этом пункте рассматриваются следующие вопросы:

  1. Обзор программного обеспечения, связанного с ЧПУ.
  2. Подбор программного обеспечения.
  3. Программное обеспечение CAM.
  4. Программное обеспечение САПР.
  5. Програмное обеспечение NC Controller.

——————————————————————————————————————————————————–

Зная о том, что является сложным техническим и электронным устройством, многие умельцы думают, что его просто невозможно изготовить своими руками. Однако такое мнение ошибочно: самостоятельно сделать подобное оборудование можно, но для этого нужно иметь не только его подробный чертеж, но и набор необходимых инструментов и соответствующих комплектующих.

Обработка дюралевой заготовки на самодельном настольном фрезерном станке

Решившись на изготовление самодельного с ЧПУ, имейте в виду, что на это может уйти значительное количество времени. Кроме того, потребуются определенные финансовые затраты. Однако не побоявшись таких трудностей и правильно подойдя к решению всех вопросов, можно стать обладателем доступного по стоимости, эффективного и производительного оборудования, позволяющего выполнять обработку заготовок из различных материалов с высокой степенью точности.

Чтобы сделать фрезерный станок, оснащенный системой ЧПУ, можно воспользоваться двумя вариантами: купить готовый набор, из специально подобранных элементов которого и собирается такое оборудование, либо найти все комплектующие и своими руками собрать устройство, полностью удовлетворяющее всем вашим требованиям.

Инструкция по сборке самодельного фрезерного станка с ЧПУ

Ниже на фото можно увидеть сделанный собственными руками , к которому прилагается подробная инструкция по изготовлению и сборке с указанием используемых материалов и комплектующих, точными «выкройками» деталей станка и приблизительными затратами. Единственный минус — инструкция на английском языке, но разобраться в подробных чертежах вполне можно и без знания языка.

Скачать бесплатно инструкцию по изготовлению станка:

Фрезерный станок с ЧПУ собран и готов к работе. Ниже несколько иллюстраций из инструкции по сборке данного станка

«Выкройки» деталей станка (уменьшенный вид) Начало сборки станка Промежуточный этап Заключительный этап сборки

Подготовительные работы

Если вы решили, что будете конструировать станок с ЧПУ своими руками, не используя готового набора, то первое, что вам необходимо будет сделать, - это остановить свой выбор на принципиальной схеме, по которой будет работать такое мини-оборудование.

За основу фрезерного оборудования с ЧПУ можно взять старый сверлильный станок, в котором рабочая головка со сверлом заменяется на фрезерную. Самое сложное, что придется конструировать в таком оборудовании, - это механизм, обеспечивающий передвижение инструмента в трех независимых плоскостях. Этот механизм можно собрать на основе кареток от неработающего принтера, он обеспечит перемещение инструмента в двух плоскостях.

К устройству, собранному по такой принципиальной схеме, легко подключить программное управление. Однако его основной недостаток заключается в том, что обрабатывать на таком станке с ЧПУ можно будет только заготовки из пластика, древесины и тонкого листового металла. Объясняется это тем, что каретки от старого принтера, которые будут обеспечивать перемещение режущего инструмента, не обладают достаточной степенью жесткости.

Чтобы ваш самодельный станок с ЧПУ был способен выполнять полноценные фрезерные операции с заготовками из различных материалов, за перемещение рабочего инструмента должен отвечать достаточно мощный шаговый двигатель. Совершенно не обязательно искать двигатель именно шагового типа, его можно изготовить из обычного электромотора, подвергнув последний небольшой доработке.

Применение шагового двигателя в вашем даст возможность избежать использования винтовой передачи, а функциональные возможности и характеристики самодельного оборудования от этого не станут хуже. Если же вы все-таки решите использовать для своего мини-станка каретки от принтера, то желательно подобрать их от более крупногабаритной модели печатного устройства. Для передачи усилия на вал фрезерного оборудования лучше применять не обычные, а зубчатые ремни, которые не будут проскальзывать на шкивах.

Одним из наиболее важных узлов любого подобного станка является механизм фрезера. Именно его изготовлению необходимо уделить особое внимание. Чтобы правильно сделать такой механизм, вам потребуются подробные чертежи, которым необходимо будет строго следовать.

Чертежи фрезерного станка с ЧПУ

Приступаем к сборке оборудования

Основой самодельного фрезерного оборудования с ЧПУ может стать балка прямоугольного сечения, которую надо надежно зафиксировать на направляющих.

Несущая конструкция станка должна обладать высокой жесткостью, при ее монтаже лучше не использовать сварных соединений, а соединять все элементы нужно только при помощи винтов.

Объясняется это требование тем, что сварные швы очень плохо переносят вибрационные нагрузки, которым в обязательном порядке будет подвергаться несущая конструкция оборудования. Такие нагрузки в итоге приведут к тому, что рама станка начнет разрушаться со временем, и в ней произойдут изменения в геометрических размерах, что скажется на точности настройки оборудования и его работоспособности.

Сварные швы при монтаже рамы самодельного фрезерного станка часто провоцируют развитие люфта в его узлах, а также прогиб направляющих, образующийся при серьезных нагрузках.

Во фрезерном станке, который вы будете собирать своими руками, должен быть предусмотрен механизм, обеспечивающий перемещение рабочего инструмента в вертикальном направлении. Лучше всего использовать для этого винтовую передачу, вращение на которую будет передаваться при помощи зубчатого ремня.

Важная деталь фрезерного станка – его вертикальная ось, которую для самодельного устройства можно изготовить из алюминиевой плиты. Очень важно, чтобы размеры этой оси были точно подогнаны под габариты собираемого устройства. Если в вашем распоряжении есть муфельная печь, то изготовить вертикальную ось станка можно своими руками, отлив ее из алюминия по размерам, указанным в готовом чертеже.

После того как все комплектующие вашего самодельного фрезерного станка подготовлены, можно приступать к его сборке. Начинается данный процесс с монтажа двух шаговых электродвигателей, которые крепятся на корпус оборудования за его вертикальной осью. Один из таких электродвигателей будет отвечать за перемещение фрезерной головки в горизонтальной плоскости, а второй - за перемещение головки, соответственно, в вертикальной. После этого монтируются остальные узлы и агрегаты самодельного оборудования.

Вращение на все узлы самодельного оборудования с ЧПУ должно передаваться только посредством ременных передач. Прежде чем подключать к собранному станку систему программного управления, следует проверить его работоспособность в ручном режиме и сразу устранить все выявленные недостатки в его работе.

Посмотреть процесс сборки можно на видео, которое несложно найти в интернете.

Шаговые двигатели

В конструкции любого фрезерного станка, оснащенного ЧПУ, обязательно присутствуют шаговые двигатели, которые обеспечивают перемещение инструмента в трех плоскостях: 3D. При конструировании самодельного станка для этой цели можно использовать электромоторы, установленные в матричном принтере. Большинство старых моделей матричных печатных устройств оснащались электродвигателями, обладающими достаточно высокой мощностью. Кроме шаговых электродвигателей из старого принтера стоит взять прочные стальные стержни, которые также можно использовать в конструкции вашего самодельного станка.

Чтобы своими руками сделать фрезерный станок с ЧПУ, вам потребуются три шаговых двигателя. Поскольку в матричном принтере их всего два, необходимо будет найти и разобрать еще одно старое печатное устройство.

Окажется большим плюсом, если найденные вами двигатели будут иметь пять проводов управления: это позволит значительно увеличить функциональность вашего будущего мини-станка. Важно также выяснить следующие параметры найденных вами шаговых электродвигателей: на сколько градусов осуществляется поворот за один шаг, каково напряжение питания, а также значение сопротивления обмотки.

Конструкция привода самодельного фрезерного станка с ЧПУ собирается из гайки и шпильки, размеры которых следует предварительно подобрать по чертежу вашего оборудования. Для фиксации вала электродвигателя и для его присоединения к шпильке удобно использовать толстую резиновую обмотку от электрического кабеля. Такие элементы вашего станка с ЧПУ, как фиксаторы, можно изготовить в виде нейлоновой втулки, в которую вставлен винт. Для того чтобы сделать такие несложные конструктивные элементы, вам понадобятся обычный напильник и дрель.

Электронная начинка оборудования

Управлять вашим станком с ЧПУ, сделанным своими руками, будет программное обеспечение, а его необходимо правильно подобрать. Выбирая такое обеспечение (его можно написать и самостоятельно), важно обращать внимание на то, чтобы оно было работоспособным и позволяло станку реализовывать все свои функциональные возможности. Такое ПО должно содержать драйверы для контроллеров, которые будут установлены на ваш фрезерный мини-станок.

В самодельном станке с ЧПУ обязательным является порт LPT, через который электронная система управления и подключается к станку. Очень важно, чтобы такое подключение осуществлялось через установленные шаговые электродвигатели.

Выбирая электронные комплектующие для своего станка, сделанного своими руками, важно обращать внимание на их качество, так как именно от этого будет зависеть точность технологических операций, которые на нем будут выполняться. После установки и подключения всех электронных компонентов системы ЧПУ нужно выполнить загрузку необходимого программного обеспечения и драйверов. Только после этого следуют пробный запуск станка, проверка правильности его работы под управлением загруженных программ, выявление недостатков и их оперативное устранение.

ЧПУ может поставить вас в тупик - так велико разнообразие на рынке промышленного инструмента.

Только многолетний опыт и специфические знания позволяют специалистам осуществить выбор станков ЧПУ в соответствии с требованиями предъявляемыми к оборудованию.

Многие просто теряются в этом обилии, и это неудивительно - выбрать лучший ЧПУ-станок бывает сложно даже профессионалам, если они не следят за новинками рынка инструментов, ассортимент которого постоянно расширяется и усовершенствуется.

По каким же критериям лучше выбрать ЧПУ станок?

Это зависит от того, для чего он будет использоваться. От материалов, профиля работ, необходимой скорости и точности, от требуемого ресурса. Многие значимые характеристики таких станков напрямую зависят от их оснащения - от свойств их комплектующих и расходников, от конструктивных особенностей. Рассмотрим самые основные.
Шпиндель - одна из главных частей фрезерного станка. Именно от шпинделя зависит то, какие фрезы смогут применяться именно с этим станком, под какими углами их можно будет закрепить и как именно применять. Привод шпинделя обычно вмонтирован - то есть, шпиндель представляет собой мощный компактный электродвигатель с цангой для зажима фрезы.


Многое прямо зависит и от качества шпинделя - хороший шпиндель прослужит долго, постоянно радуя вас качеством работы, плохой же может загубить не только изделие, но и повредить сам станок в случае аварии, а то и травмировать персонал. К выбору шпинделя следует подходить ответственно, всегда чутко прислушиваясь к рекомендациям производителя станка и обращая внимание в первую очередь на продукцию известных и зарекомендовавших себя производителей комплектующих.

Область фрезеровки

Это одна их важнейших характеристик станка ЧПУ - размер области фрезеровки определяет то, какого размера изделия сможет обрабатывать станок. Для каждой узкой области применения существуют свои требования по размерам, более универсальные станки имеют регулируемую область фрезеровки, либо заведомо превышающую требования по большинству часто встречающихся кейсов применения.


Имеет значение и устройство площадки - не должно вызывать затруднений закрепление и чёткое позиционирование детали заготовки, в противном случае возможен серьёзный брак. Осуществляя выбор фрезерного станка ЧПУ для работы надо заранее определиться с размерами обрабатываемых деталей, чтоб не попасть впросак.

Предназначение станка

ЧПУ станки разделяются в первую очередь по материалу, который призваны обрабатывать, а так же по области применения.

Внесённые данные о размерах и форме детали становятся в них управляющими траекториями, которые, в свою очередь, превращаются в управляющие программы в процессе постпроцессирования.

Постпроцессор

Постпроцессор - специальный программный продукт, который превращает данные о параметрах детали в индивидуальную программу, управляющую движениями инструмента и/или заготовки, для каждого конкретного станка.


Здесь можно подробнее прочитать о разработке кинематических моделей, на примере промышленных систем фирмы Siemens .

Детальную информацию по работе с каждым конкретным станком можно получить на официальном сайте его производителя. Это наиболее надёжный вариант, который убережёт от многих ошибок.

В отдельных случаях, когда предстоит работа на серьёзном промышленном станке, задать программу по обработке какой-то более-менее простой детали можно вручную, через пульт управления станком. В таком случае следует строго соблюдать инструкции производителя и последовательно выполнить все необходимые шаги.

Пульт управления одним из фрезерных ЧПУ-станков:

Используемые фрезы

В зависимости от специфики работы - от материала, необходимых форм обработки и других факторов, в фрезерных ЧПУ- станках используется большое количество всевозможных фрез. Фрезы бывают однозаходные, двухзаходные, сферические, v-образные, конусные сферические, пирамидальные радиусные с одной или двумя режущими гранями, гравировальные, отрезные и т.д.

Сферические и пирамидальные фрезы применяются для глубокого выбирания материала из детали, обработки углов, создания углублений соответствующей формы. Отрезные и гравировальные фрезы разной формы применяются для гравировки, разрезки детали, обработки краёв изделия, и для придания формы - создания барельефного изображения. Радиусные и галтельные фрезы, как выпуклые, так и вогнутые, применяются для обработки углов, краёв столешниц и других деталей, снятия фасок и т.д. Торцевые фрезы позволяют создавать отверстия, в отличие от сверел - любой формы.

Примеры используемых фрез:

Разнообразие фрез варьируется от простейших, похожих на обыкновенное сверло или бур, и до очень сложных, из разных материалов и всевозможной формы, с различным количеством режущих граней. Это обеспечивает широкий диапазон решаемых ими задач.


Для каждого материала и вида работ необходим индивидуальный подбор фрез, которые вам поможет подобрать наш специалист.

Фрезерные станки с программным управлением - прекрасный инструмент, при грамотном использовании способный создавать очень широкий ассортимент изделий, от рекламных конструкций до частей других станков, от кухонных разделочных досок до деталей реактивных авиадвигателей. Область их применения почти безгранична, а ассортимент и степень доступности увеличиваются с каждым днём.

Сейчас уже не только машиностроительный завод может позволить себе подобное оборудование, но и относительно небольшая мастерская, что не может не радовать.

Если Вам требуется консультация по выбору ЧПУ станка - помните что вы всегда можете обратиться в Top 3D Shop!

Хотите больше интересных новостей из мира 3D-технологий?

После рассмотрения вариантов конструкции длинной оси - X - можно перейти к рассмотрению оси Y. Ось Y в виде портала - наиболее популярное решение в сообществе хоббийных станкостроителей, и неспроста. Это простое и вполне рабочее, хорошо себя зарекомендовавшее, решение. Однако, и в нем есть подводные камни и моменты, которые надо уяснить перед проектированием. Для портала крайне важна устойчивость и правильный баланс - это снизит износ направляющих и передач, снизит прогиб балки под нагрузкой, уменьшит вероятность подклинивания при перемещении. Для определения правильной компоновки посмотрим на силы, приложенные к порталу во время работы станка.

Рассмотрите схему хорошенько. На ней отмечены следующие размеры:

  • D1 - расстояние от области резания до цента расстояния между направляющими балки портала
  • D2 - расстояние между приводным винтом оси X до нижней направляющей балки
  • D3 - расстояние между направляющими оси Y
  • D4 - расстояние между линейными подшипниками оси X

Теперь рассмотрим действующие усилия. На картинке портал перемещается слева направо за счет вращения приводного винта оси X(расположен внизу), который приводит в движение гайку, зафиксированную снизу на портале. Шпиндель опущен и фрезерует заготовку, при этом появляется сила противодействия, направленная навстречу движению портала. Эта сила зависит от ускорения портала, скорости подачи, вращения шпинделя и силы отдачи с фрезы. Последняя зависит от собственно фрезы(типа, остроты, наличия смазки и т.п.), скорости вращения, материала и прочих факторов. Определению величины отдачи с фрезы посвящено множество литературы по подбору режимов резания, в настоящее время нам достаточно знать, что при движении портала возникает сложносоставная сила противодействия F. Сила F, приложенная к зафиксированному шпинделю, по конструктивным элементам прикладывается к балке портала в виде момента A = D1 * F. Данный момент может быть разложен на пару равных по модулю, но разнонаправленных сил A и B, приложенных к направляющим #1 и #2 балки портала. По модулю Сила А = Сила B = Момент А / D3. Как отсюда видно, силы, действующие на направляющие балки уменьшаются, если увеличивать D3 - расстояние между ними. Уменьшение сил снижает износ направляющих и крутильную деформацию балки. Также, с уменьшением силы А, уменьшается и момент B, приложенный к боковинам портала: Момент B = D2 * Сила A. Из-за большого момента B боковины, будучи не способными согнуться строго в плоскости, начнут виться и изгибаться. Момент B необходимо уменьшать также потому, что необходимо стремиться к тому, чтобы нагрузка всегда распределялась по всем линейным подшипникам равномерно - это снизит упругие деформации и вибрации станка,а, значит, повысит точность.

Момент B, как уже было сказано, можно уменьшить несколькими путями -

  1. уменьшить силу A.
  2. уменьшить плечо D3

Задача - сделать силы D и C сделать как можно более равными. Эти силы складываются из пары сил момента B и веса портала. Для правильного распределения веса надо рассчитать центр масс портала и разместить его точно между линейными подшипниками. Именно этим объясняется распространенная зигзагообразная конструкция боковин портала - это сделано для того, чтобы сместить направляющие назад и приблизить тяжелый шпиндель к подшипникам оси X.

Итого, при проектировании оси Y учитывайте следующие принципы:

  • Старайтесь минимизировать расстояние от приводного винта/рельсов оси X до направляющих оси Y - т.е. минимизируйте D2.
  • Снижайте по возможности вылет шпинделя относительно балки, минимизируйте расстояние D1 от области реза до направляющих. Оптимальным ходом по Z обычно считается 80-150 мм.
  • Снижайте по возможности высоту всего портала - высокий портал склонен к резонансу.
  • Рассчитывайте заранее центр масс всего портала, включая шпиндель и разрабатывайте стойки портала таким образом, чтобы центр масс располагался точно между каретками направляющих оси X и как можно ближе к ходовому винту оси X.
  • Разносите направляющие балки портала подальше - максимизируйте D3 для снижения момента, приложенного к балке.

КОНСТРУКЦИЯ ОСИ Z

Следующим шагом является выбор структуры наиболее важной части станка - оси Z. Ниже приведены 2 примера конструктивного исполнения.


Как было уже упомянуто, при строительстве станка с ЧПУ необходимо учитывать силы, возникающие при работе. И первым шагом на этом пути является отчетливое понимание природа, величины и направления этих сил. Рассмотрим схему ниже:

Силы, действующие на ось Z



На схеме отмечены следующие размеры:

  • D1 = расстояние между направляющими оси Y
  • D2 = расстояние вдоль направляющих между линейными подшипниками оси Z
  • D3 = длина подвижной платформы(базовой пластины), на которую собственно монтируется шпиндель
  • D4 = ширина всей конструкции
  • D5 = расстояние между направляющими оси Z
  • D6 = толщина базовой пластины
  • D7 = вертикальное расстояние от точки приложение сил реза до середины между каретками по оси Z

Посмотрим на вид спереди и отметим, что все конструкция перемещается вправо по направляющим оси Y. Базовая пластина выдвинута максимально вниз, фреза заглублена в материал и и при фрезеровке возникает сила противодействия F, направленная, естественно, противоположно направлению движения. Величина этой силы зависит от оборотов шпинделя, числа заходов фрезы, скорости подачи, материала, остроты фрезы и т.п.(напоминаем, что некоторые предварительные расчеты того, какие материалы будут фрезероваться, а значит, и оценка сил реза, должна быть сделана перед началом проектирования станка). Как влияет данная сила на ось Z? Будучи приложена на расстоянии от места, где закреплена базовая пластина, эта сила создает крутящий момент А = D7 * F. Момент, приложенный к базовой пластине, через линейные подшипники оси Z передается в виде пар поперечных сил на направляющие. Силы, преобразованная из момента, обратно пропорциональная расстоянию между точками приложения - следовательно, для снижения усилий, изгибающих направляющие, необходимо увеличивать расстояния D5 и D2.

Расстояние D2 также участвует в случае фрезерования вдоль оси X - при этом возникает аналогичная картина, только возникающий момент приложен на заметно большем рычаге. Этот момент старается провернуть шпиндель и базовую пластину, а возникающие силы перпендикулярны плоскости пластины. При этом момент равен силе реза F, умноженной на расстояние от точки реза до первой каретки - т.е. чем больше D2, тем меньше момент(при неизменной длине оси Z).

Отсюда следует правило: при прочих равных надо стараться обязательно разнести каретки оси Z подальше друг от друга, особенно по вертикали - это значительно увеличит жесткость. Возьмите за правило никогда не делать расстояние D2 меньше 1/2 длины базовой пластины. Также убедитесь, что толщина платформы D6 достаточна, чтобы обеспечить желаемую жесткость - для этого необходимо рассчитать максимальные рабочие усилия на фрезе и смоделировать прогиб пластины в САПР.

Итого , придерживайтесь следующих правил при конструировании оси Z портального станка:

  • максимизируйте D1 - это снизит момент(а следовательно, силы), действующий на стойки портала
  • максимизируйте D2 - это снизит момент, действующий на балку портала и ось Z
  • минимизируйте D3(в пределах заданного хода по Z)- это снизит момент, действующий на балку и стойки портал.
  • максимизируйте D4(расстояние между каретками оси Y) - это снизит момент, действующий на балку портала.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.